148 Advanced Digital Systems

In contrast to the 68000’s CISC architecture, the MIPS family of microprocessors is one of the
commercial pioneers of RISC. MIPS began as a 32-bit architecture with 32-bit instruction words and
32 general-purpose registers. In the 1990s the architecture was extended to 64 bits. MIPS instruction
words are classified into three basic types: immediate (I-type), jump (J-type), and register (R-type).
The original MIPS architecture supports four 32-bit addition instructions without any addressing
mode permutations: add signed (ADD), add unsigned (ADDU), add signed immediate (ADDI), and
add unsigned immediate (ADDIU). These instructions are represented by two types of instruction
words, I-type and R-type, as shown in Table 7.4.

TABLE 7.4 MIPS Addition Instruction Words

I-type bits 31:26 25:21 20:16 15:0
Field Opcode Source Register Target Register Immediate data
ADDI 001000 Rn Rn Data
ADDIU 001001 Rn Rn Data
R-type bits 31:26 25:21 20:16 15:11 10:6 5:0
Field Opcode Source Register Target Register Destination Register Shift Amount Function
ADD 000000 Rn Rn Rn 00000 100000
ADDU 000000 Rn Rn Rn 00000 100001

The immediate operations specify two registers and a 16-bit immediate operand: Rt = Rg + Im-
mediate. The other instructions operate on registers only and allow the programmer to specify three
registers: Rp = Rg + Ry. If you want to add data that is in memory, that data must first be loaded into
a register. Whereas a single 68000 instruction can fetch a word from memory, increment the associ-
ated pointer register, add the word to another register, and then store the result back into memory, a
MIPS microprocessor would require separate instructions for each of these steps. This is in keeping
with RISC concepts: use more simpler instructions to get the job done.

Instruction decode logic for a typical RISC microprocessor can be much simpler than for a CISC
counterpart, because there are fewer instructions to decode and fewer operand complexities to recog-
nize and coordinate. Generally speaking, a RISC microprocessor accesses data memory only with
dedicated load/store instructions. Data manipulation instructions operate solely on internal registers
and immediate operands. Under these circumstances, microprocessor engineers are able to heavily
optimize their design in favor of the reduced instruction set that is supported. It turns out that not all
instructions in a CISC microprocessor are used with the same frequency. Rather, there is a core set
of instructions that are called most of the time, and the rest are used infrequently. Those that are used
less often impose a burden on the entire system, because they increase the permutations that the de-
code logic must handle in any given clock cycle. By removing the operations that are not frequently
used, the microprocessor’s control logic is simplified and can therefore be made to run faster. The re-
sult is improved throughput for the most commonly executed operations, which translates directly
into greater performance overall.

The fundamental assumption that RISC microprocessors rely on to maintain their throughput is
high memory bandwidth. For a RISC microprocessor to match or outperform a CISC microproces-



Advanced Microprocessor Concepts 149

sor, it must be able to rapidly fetch instructions, because several RISC instructions are necessary to
match the capabilities of certain CISC instructions. An older computer architecture with an asyn-
chronous memory interface may not be able to provide sufficient instruction bandwidth to make a
RISC microprocessor efficient. CISC architectures dominated off-the-shelf microprocessor offerings
until low-latency memory subsystems became practical at a reasonable cost. Modern computer ar-
chitectures implement very fast memory interfaces that are able to provide a steady stream of in-
structions to RISC microprocessors.

One fundamental technique for improving the instruction fetch bandwidth is to design a micro-
processor with two memory interfaces—one for instructions and one for data. This is referred to as a
Harvard architecture, as compared to a conventional von Neumann architecture in which instruction
and data memory are unified. Using a Harvard architecture, instruction fetches are not disrupted by
load/store operations. Unfortunately, a Harvard architecture presents numerous system-level prob-
lems of how to split program and data memory and how to load programs into memory that cannot
be accessed by load/store operations. Most microprocessors that implement a Harvard architecture
do so with smaller on-chip memory arrays that can store segments of program and data that are
fetched from and written back to a unified memory structure external to the microprocessor chip.
While this may sound so complex as to only be in the realm of serious number-crunchers, the small
but powerful 8-bit PIC™ RISC microcontrollers from Microchip Technology implement a Harvard
architecture with mutually exclusive program and data memory structures located on chip. This il-
lustrates the point that advanced microprocessor concepts can be applied to any level of performance
if a problem needs to be solved.

The RISC concept appears to have won the day in the realm of high-performance computing.
With memory bandwidth not being much of a hindrance, streamlined RISC designs can be made fast
and efficient. In embedded computing applications, the victor is less clear. CISC technology is still
firmly entrenched in a market where slow memory subsystems are still common and core micropro-
cessor throughput is not always a major design issue. What is clear is that engineers and marketers
will continue to debate and turn out new products and literature to convince others why their ap-
proach is the best available.

7.2 CACHE STRUCTURES

Microprocessor and memory performance have improved asymmetrically over time, leading to a
well recognized performance gap. In 1980, a typical microprocessor ran at under 10 MHz, and a typ-
ical DRAM exhibited an access time of about 250 ns. Two decades later, high-end microprocessors
were running at several hundred megahertz, and a typical DRAM exhibited an access time of 40 ns.
Microprocessors’ appetites for memory bandwidth has increased by about two orders of magnitude
over 20 years while main memory technology, most often DRAM, has improved by less than an or-
der of magnitude during that same period. To make matters worse, many microprocessors shifted
from CISC to RISC architectures during this same period, thereby further increasing their demand
for instruction memory bandwidth. The old model of directly connecting main memory to a micro-
processor has broken down and become a performance-limiting bottleneck.

The culprits for slow main memory include the propagation delays through deep address decod-
ing logic and the high random access latency of DRAM—the need to assert a row address, wait
some time, assert a column address, and wait some more time before data is returned. These prob-
lems can be partially addressed by moving to SRAM. SRAM does not exhibit the latency penalty of
DRAM, but there are still the address decoding delays to worry about. It would be nice to build main
memory with SRAM, but this is prohibitively expensive, as a result of the substantially lower den-





